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TRANSVERSE STIFFENERS UNDER UNIFORM .COMPRESSION®

By R. Bérbré
I. INTRODUCTION -

The proper application of stiffeners, l.e., stiffen-
ing ribs fixed to a plate, leads to an increase of the
1g strength of rectangular plates. In calculating
.ed plates, we have to distinguish between:

Plates with large spacing of the stiffeners in
he bending stiffnesses of the plate and ribs appear
ely in the calculation, and

Plates with small stiffener spacings for which
ding stiffness of plate and stiffeners in the direc-
the stiffeners can be combined to a new bending
ss, provided the stiffeners all have the same cross
+ In general, we are allowed to treat such plates
as orthotropic plates.

The first investigation on the stability of plates,
corresponding to 1) above, was made by Timoshenko (refer-
ence 2), who calculated the buckling stress of plates with
one to three longitudinal or transverse stiffeners with
equal spacings. He considered hinged plate edges and two
loadings, uniform compression and pure shear. It is well
to note here that in the following discussion those stif-
feners in the ‘direction of the normal loading are called
longitudinal, and those perpendlcular to the -direction of
loading are called transverse, "

. Timoshenko uses the energy method for solution, a
method which was applied by Bryan (reference 3) in his
classical work on the buckling of a rectangular plate, and
which was later on - taking into consideration the mass

- forces ~ exactly proven by Reissner (reference 4), Recent-

ly the stiffened plate with one longitudinal stiffener in

"Stabllltat glelchma531g zedrlickter Rechteckplatten mit
Langs- oder Quersteifen." Ingenieur-Archiv, vol. 8,
no. 2, 1937, pp. 117-150,
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the middle of the compression field, i.e., the middle of
the plate, stressed by pure bending, compression, or shear,
was considered by Chwalla (references 5 and 6), and the
problem was solved also with the aid of the energy method.

In the application of the energy method, the wave form
is assumed to be represented by a series which satisfies
the boundary conditiong, and the coefficients of which are
determined by minimum energy considerations. . The more ex-
actly the assumed shape of the wave pattern agrees with
the actual pattern, the less terms in the summation are
necessary for a sufficiently accurate calculation of the
buckling stresses. Exact buckling conditions in a finished
form cannot be developed with this method. However, for
some cases, concerning the loading and the reactions of the
plate, we have complete soluitions of the diffcrential equa-
tion and in these cases the buckling conditions can be rep-
resented exactly. As the stiffened plate consists of a num-
ber of nonstiffened strips which are connected with each
other along the stiffeners, the solutions of the differen—
tial equation for the nonstiffened plate can be accordingly
applied to the stiffened plate.

For the unstiffened plate Timoshenko (reference 7),
Reissner (reference 8), and in a more complete manner,
Chwalla (reference 9) have set up the buckling conditions
for uniform compression in one direction, the loaded edges
being hinged with optional support of the longitudinal
edges; with the aid of the complete solution of the differ-
ential equation. The solutions for supported transverse
edges and hinged longitudinal edges originate from
Schleicher (reference 10),

With shear stresses, complete solutions are known only
for the infinitely long strip. The fundamental investiga-
tion for this is the work of Southwell and Skan (reference
11), in which pure shear stress with hinged and fixed lon-
gitudinal edges is investigated. Schmieden (reference 12)
develops solutions for combined shear and compression of
the infinitely long strip.

In the present paper, the completz buckling conditions
of stiffened plates are being developed for uniform compres-
sion. We shall treat plates with one or two longitudinal
- or transverse stiffeners at any point, discuss the buckling
conditions, and evaluate them for different cases,
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For the special case with any number of longitudinal

.stiffeners with equal dimensions and with equal spacings,
. Lokshin (reference 13) has calculated the buckling condi-

tions, However, as we shall prove in the following, these
buckling conditions are not complete.

II, PLATE WITH LONGITUDINAL ST IFFENERS

1. General principles.- The rectangular plate with
the length-width ratio a = a/b 1is equipped with longitu-
dinal stiffeners at the points y = b,y ¥ =52, + b,, etc.,
by which it is divided into several nonstiffencd areas
with the ratios «a, = a/bl’ g = afby w.e. ap = a/bp (fig.
1), If the plate is loaded with uniform normal stresses
Oy at the edges x = 0 and =x = a, the buckling deforma-

tion w = w(x,y) of the plate middle area inside of any
field i satisfies the differential equation:

a a 4 2 2
. . s to 3
é_‘f_‘%_,_ > agW12 + e) W2~ togx O Wg_ = AAWj_"‘ —_— é__‘_%_ =0 (1)
o x 3x“3dy oy D ox D 3x
3
in which D = B
12(1 - p?)

is the stiffness and t is the thickness of the plate.
Considering the ratios

£ o= M= -

by’ by
c w2 D .
P, = = Ez* (Glc = —5— = (Euler dbuckling stress) (ref-
1e " 4 ‘ |

erenbe 14). Infreférence to the width ' b,” of the first
plate field, the differential equatiqnl(i)'changes into

A dwy (E,N) + n® mlg———l ; 0. ' (2)

Under the'assumption of hinged mounting, (w = Aw = 0)

at the borders ¢ = O and ¢ = &,, which is valid for the

following considerations, the'differential equation (2)'is
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satisfied by the equation*
] . mym _
wy = }i“. mi Yy (M) sin Vpy ¢ with vy, = —a1 (mi-1,2.,3....)

(3)
Substituting this solution in equation (2), we obtain
for the function TYp;(M), which only depends upon T, for

every value m3, the ordinary differential equation

vIV L oov2 Il 2 (2 L g2 ®,) Yp; =0 . (4)

m3 mi “mj my ' mi
the solution of which is

Ym. = A3 sinh kli M+ By cosh K33 N +

i
+ Cj sin Kgg3 M + Di cos Ky T (5)

in which

"3 7 J vmg (7/F % vmy)

* %
For determining the constants 4A; to Dji, we have

homogeneous equations at our disposal; the solutions w #
0O are only for special values Py the so-called buck=-

ling values k,, with the critical buckling stresses

O = k; 0,4. ZIEvery term of the solution (3) satisfies the
boundary conditions at the borders ¢ = O and ¢ = o,;
therefore for each value m3; buckling values k,; can be

calculated, the dbuckling areas of which run in a sine curve
in the ¢~direction with m; half-waves. As every two ad-

Joining fields are continuously connected along the longi-
" tudinal stiffeners, it is necessary for obtaining the buck-
ling, sine-shaped in the §~direction, that the number of
half-waves in both fields = and therefore in all fields -
be the same, For this reason, we can put

*Mhig expression, by which the buckle in the ¢-direction
is assumed to be a sine-curve, was used by Timoshenko,
Reissner, and others for problems of stability; actually,

it is even older and was formerly used in probelms for bend-
ing of rectangular plates,

**¥The constants Dj with the subscript 1 must not be

confused with the stiffness of the plate D.
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my=m.vmg = ovme Kotk
‘ o N o - 21 2
- The values &, and Kz are real for the actually
occurring cases, since the buckling stresses of the gtiff-
ened plate, whose borders N =0 and T = b/b; = B are
generally strengthened by some form of support, are greater
than the minimum values of the real solutions (m,/k, = vy)
which give the Euler critical stress
- m® n® D

(o}
k aZt

of the strip with the length a, whose longitundinal edges
are under uniform compression,

As will be shown in the next section, we have, for

determining the 4r constants 4j;, B3, Gy, Dy (i = 1, 2,
¢ee r) four boundary conditions at the borders T = 0 and
and M = b/b, = B and, furthermore, 4(r - 1) transition-

al conditions at the stiffeners which form a system of 4r
homogeneous equations. We obtain the buckling condition
with the aid of these equations by putting the determinant
of the denominator equal to zero. Cnly the minimum values
of the roots of the buckling equations are of interest, the
other roots representing hicgher buckling values,

The buckling values k with respect to the total
width b of the plate, i.e., (reference 14) k = ox/0¢,
are calculated from k,:

b 2
O:e a2
ko= ky =gt =k (T:) =k, B

2e Boundary and transitional conditions.- A%t the
borders NM=0 and 1N = B, the plate is generally con=
nected to edge supports. In many cases these supports
have relatively large and compact cross sections, so that
a certain elastic mounting of the plate with them is given,
This mounting should be taken into account in the general
boundary conditionsg. (See reference 9.)

For the stiffeners and supports O to r, respec~
tively, we introduce the following notations:
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Fq to F., cross sections
E Jﬂn to E Jﬂr' bending stiffness about TN axis

G T, to @ T,, torsional stiffness*

Along the border line T = O Dbetween the field 1
and the support O, there acts as an internal force the
bending moment

a Wy Wl\\
my = ﬁg _SF?) (6)
and the reaction forces
: 3
D a d W :
an = = o5 Ok o+ (2 = p) S (7)
b,° aﬂ ot"om

of the plate field 1, which, if we consider the plate cut
off along the support, are to be applied as external loads
to the support (fig. 2).

The bending moments mn create a torsional stress in
the support. The change of the total torsional moment Mg

acting at the point £ igs therefore

Under the assumption that the change of slope of the
cross sections can be neglected in the torsion considera-
tion, which applies exactly only for circular and ring-
shaped plates, but can be approximately assumed for other
shapes, the mutual twisting d4¢ of the stiffening element
by d¢ ise :

Mi b, 4
d‘a—a‘To 1 E
and from this follows:
; d.d
My, = G T, ————
4 °© v dt

*The values Ty to Tp may be taken from the results of

Webert!s work (reference 15) or from that of Forster (ref=
erence 16),
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On account of the continuous connection of stiffener
and -plate, the twisting of the stlffener is equal to the

slope of the plate, i, Se,
. ow,
= tan § = ——
8 b, 3
therefore
a2 %w,
mp = G Ty 55 To 3 3
b, dg_ b, 3 ¢
so that the first boundary condition at the po1nt n =0
is
D (37 G T o v (8)
5,2 N\ on° at2 ° b, 3 t°a N

The reactions an of the plate field 1l create in the
support a bending moment Mn about the T~axis, assuming

the border of the plate to be at the shear center of the
support, If, at the same time, the support is acted on by
the compression stresses oy, then, at its ends, we have

the compression forcesg
Po = oxx Fo = %y 036 Fp
which at the point ¢ induce the bending moment P, w,.

For the bending of the stiffener which, on account of the
continuous connection between it and the sheet, agrees

with the deflections w; for T = 0, we have therefore
the differential equation
3%w, :
BdMo 557 s =~ M==dg=-Fw
o ¢
From this, by differentiating twice with respect to £ a
second boundary condition for T = 0 is obtained:
4 3 3 2
w D o w o w o W
EJ —te = o o (2L (2~ ————L> k, o P, ——2i-
No blaa i AT 3t%an 1 %1e Yo 333
. (9)
For the support r, i.e., for 1 = B, the corresponding
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boundary conditions are

2 2 3
D (9 %y ., , O ¥ P 0" Vp
(L + p —EF)= G T (10)
b,® N an’ d E) T 5,° 3t an
and
4 3 2
. 3 Wy D 3 o Wy
ETqp ——p—g = ST 4(2-p) = k, 0,6 Fo =5  (11)
* y 85¢% b, Van° aig_én> ¢ 70 3¢

Between the adjoining fields i and 1 + 1, there
is the stiffener 1 with the cross section F3; and the

moment of inertia Jﬂi about the TMN—axis. At the stiff-

ener, the conditions of continuous connection to the sheet
have to be first satisfied. Therefore, for

by + by + ees + by

N = B
we obtain
and '
ows _ OWii, )
3% ° 5 h (13)

Since the cross sections of the stiffeners generally
have I, L, or Z forms, indicating no great torsional
stiffness, we may neglaeet the torsional stress which oc~
curs in the stiffeners due to the bending of the plate.:
The experiments of Erlemann (reference 17) Jjustify this
assumption. The moments m of the fields 1 and i+1

at the stiffener are therefore equal, i.¢.,

2 - . 2
D (3 wi o wj D_ (3 Wiy , 1+1> (143)

= TTE O \Ti R .5/ = —"—E

b, Nam at®/ v, Nan®

Along the stiffener, we have, as a further condition of
the continuity

2 2 ’
Fe] Wi - o Wi+l’

5i5 T el (14v)

so that the transitional condition {1l4a) becomes
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Fwy _ Fwyy,y
R

Considering the fields i and 1+1 as cut off at the
stiffener, a transitional condition corresponding to Yound-
ary condition (9) applies, but instead of the reaction force
of the border field, the difference between the reactions
of the fields 1 and i+l, adjoining at the stiffener,
have to be introduced., Therefore,

(14)

3" w D (3w W 3w
BJp, —p—ap = = == (S2433 4 (2.p) ity _ -
LY b, > an° at®an an%
3 2
o wWs 0o Wy
- (2-p) §Z§§ﬁ> -k ;e Fi 3EE (l5a)‘

Considering equationg (13) and (14b), we have at the gstiff-
ener,

3 3
3 w3 0 Wi+a

3t an o¢tcan

(15Dp)

so that the transitional condition (15a) is simplified to

4 3 3 2
By, —o i .2 <a Tiry 9 Wi) L 4§, 275
nl -ble 3 §4 b1 a-nz\ an3 i ie T 1 aia
(15)

In the term on the left side and the last term

of the right side, the index i1 of w may be replaced

by 1 + 1, as it makes no difference to which of the ad-
Joining fields the deflections of the stiffener are refer—
enced. Equation (15) applies exactly only to the symmet-
rically connected stiffener, the neutral axis of which co-
incides with that of the plate. In many cases, the stiff-
ener will be fastened only on one side of the plate, 1In
this case, according to the proposition of Timoshenko (ref=
erence 2), the moment of inertia Jniy must be referred to

the axis which lies in the connecting surface between the
stiffener and plate. The additional stresses in the plate
which arise from this condition are not taken into consid-
eration. They fade very fast along the effective width in
the TN-direction, according to statements by Chwalla (refer-
ence 18).




Table 1
a { b ¢ d e / g h
Gl A, | B, C 'g D, 4, B, . D,
) -V : +e 0 %s — 6
2 () — 6 i — @, + %3¢ — P, ‘
31 (129) ® Ginx, ® Cof xl i sin x, COS %y 3 — Giny ——Eof %, — sin x, — COS %y
41 (14) =i Gine #; Cof ! — %3 sin x, — 3 cos P — #? Ginx — %% Cof %, + 23 sin x, + 24 cos %,
51 (13" #, Cof 2, xl Gin xl l 4 COS 35 — %, Sin s, . , — 3, ol %, — %, Ginxy — %5 COS %4 + x5 sin %,
, —x} Cof 2, — Gm % + 23 coS x, ~— %3 sin x4 ] o . . .
61 159 + P, Ginx | + §Cofz + @, sinx, + @, cos %, ‘ + % Col + x1 Ginx xg‘cos %y + 3 sin xy
| (10 ‘ e Sin B e, ®of B, . — &y 5in B 2, — ey €08 f %,
1 : 4 W Cof fry | + Py Ginfy | + Wanacos fry | — Pynysinfony
s| g ‘ | %6 Cof By %, 0, Sin By — %y C3 COS %, %9 Gy SiN f 2
_ _ ) i i — D, Sinfx; — @, Col f %, — @, sin %, ~— @D, cos f x,
® =sinh .
® =cosh

o1

$06 °Of UMPURIOWIN TEOTUOSL ‘¥ O°V'N
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In the following, we take the ratios between bending
‘stiffnesses, dépendent .upon the cross sections of the stiff-
eners, and those of the plate from Timoshenko (reference 2):

EJ . B b
. — i sk = s
Y = 3 Yi = gt = Va5
Ty ' Fy 'b14
®11 = 3% =3y = Sai g
and, to abbreviate, we place
Edms F:b
G Ti
R v ]2
and L 55

After introducing the solution (3) in the boundary
and transitional conditions (8) to (15), the following
equations, independent of ¢ are obtained, which serve to
determine the constants & to D in the fuanctions Y. In
these equations the index m (m = number of half-waves in
the ¢-direction) is omitted for reasons of simplification,

1

Y, =-V¥% ¥ -uwv?Py =o0 (8t)
.t for N =0
- Y, + v2 (2=p) Y - @, Y, =0 (91)
T+ W, Y.t - pvBY, =0 (101)
for N =B
Y. w2 (2-p) Yol -0 Y, =0 (11 1)
Ty = Y34, = O] (121)
t
1" . ¢ for n = b .-
Yl - Yi+1 = O 1 (14-")
1"y 163
"‘Yi + Yi+l+®iYi= 0‘ (15')
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3. Plate with one longitudinal stiffener.- In the
case of one longitudinal stiffener, r = 2. With the so-
lutions, . .

Wl = Yl_ Sinv g, Yl = Al Sinh K"l n -+ Bl cosh Kl n +
+ C, sin K M + D, cos Ky N,

Y, sinvg, Y, = 4 sinh K, M + B cosh k; M +

mﬁ
i

+ C, sin K; M + Da cos Ky 7

we obtain from (8') to (15!') a system of homogeneous equa-
tions, the coefficients of which, with the abdbbreviations

- 2 2 _ 2
&p = Ky = HDT €p = KpZ2 + B ¥
i = K 2 = pF(2 - p) c, = K,2 + p¥(2 - u)
1 = Ky M7, 2 = Kz
(e + ep =c¢; + cp = K2 + K,%)

are shown in table 1., This tadble is, at the same time,
the denominator determinant to be solved, the lines of
which are denoted by the numbers 1 to 8, and the columns
by the letters a to h,

a) Soiution of the determinant and the general buck-
ling conditiong.- Solving this determinant, we denote the
subdeterminants as follows:

1, 2
s

2,

is the subdeterminant which is obtained from the complete
determinant by canceling the lines 1 and 2 and the col-
umns a and b. The determinants marked with overlining
are to be formed from the subdeterminants on the left side
of the equation,

After sliminating the lines 1 and 2, - the determi-
nant becomes: y
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1,2 a 1,2
a:bl> + ’fz"a VoK, +K33 la.:c +

Ffa ...(,W"(b‘,’f,g}‘el) o

1,2

+ Ky (Y0,=c, 85) Ia,dl , (16)
16

1,2

bv,a *

: . 1,2
+ Ky (=Y, B5tcae,) Ib:c + B, (K% K5?)
1,2
C,
-

The lines 1 and 2 contain only the unknowns A,; to Dy, the
lines 7 and 8, only the unknowns A, to Dy. According to

this, the lines 1 and 2 are independent of the lines 7 and
8, so that in the following elimination of the lines 7 and 8,
the subdeterminants

o il

+ Ky (Y, B, +czez)

1, 2
c, 4

with p = a, b, ¢, and gq = b, ¢, & {p # q) occurring
in (16), may be <generally denoted by

‘7‘?”5‘
e, T

+ [(V2, - 0162) K, cosh B Kk, sin B K, +

1, 2
‘p: q\z (= ciey = ¥,;2,) 4,

+  (=V,P% cpe,) K, sinh B Ky cos B Ky *

+0_(k 2+k,%) sinh B K, sin B Ky +
vjnﬂ
€, &

+ Y, Ky Ko (K3%+K2®) cosh B ®; cos B Kzl
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+ (— WP, Dy + 5 €) %, €in Bo; sin f xy — Dy (%2 + #3) Sin f xycos f 2, +-

+ Wy 7 25 o+ #3) Gof By sin f xy - (— Wy By + 6y 29) 2 Gof By cos fa]| 7 1 |

+ [(— Py @y + ¢y &5) 2y €in B oy sin f sy — Wy 3ty 25 (%3 + %Z) Ein B2, cos fxy —

— @, (52 + 52) Coj B x, sin f xy + (F, D, —czel)nzcoiﬂxlcosﬁxz]‘;::

+ [— Vo g %y (12 + #Z) Sin 3¢y sin sy + (W Py — ¢; 5) #, Eint B3¢ cos f %, +

I, 2

?. g

7, 8
Lok

+ (Wo - @y — cp8y) %, Cof By sin ey + D, ("% + ) €of B 2y cos B #,]

TG A SPALME
Separating the factors of ¢_, ¥, and ¢,- V,, we get
———;vlclell ' %26282i7' I
+zlc1e2( Cof By sin By |7 . gl-l—(imﬂxlcosﬁuz’——}—}-
+ Gin frysinfxe| 7 5| — Sinprcospr|7 b))
+/2€261(—|— Clnﬂxlcosﬂx2)7 ‘—}-\,mﬁylstnﬂxz 2‘
— GofBrcos By | ’—(Eofﬂ,clsmﬂxll 2])
—l—@z(xf—{—xg)(vmﬁxlsmﬁxz |—x.,mﬂxlcosﬂxziz_2;
— G0l frysin g7 |+ Gof frycos |7 5 ) W)

four

RHOR-SHRH SN

1 Wy %y %5 (263 + %5) (Goiﬂxlcosﬂxz’ ¢ “l‘(sﬁiﬁxlsinﬂlezz .

-—Cmﬂﬁcmﬂxﬁf W—vmﬂ%“nﬂ%'ﬂib

_{_@2_11;2[,,1(_ e’ '—I—Qoiﬂxlsinﬂxg’ 'g’——@lo]'ﬂxlcosﬁ%gﬁ’

—Ctnﬂxlsmﬂxz‘ |—!—@mﬂxlcosﬂx2 8‘)

h!+

+ x2 ‘g A l—~ \.,mﬂxlcosﬂle ‘— Sinfx, sin frxy|

~+ Cof B %, cos B %, f”g!—}—(slofﬂxlsinﬂxz!;:: )]

The solution of the remaining subdeterminants with
columns gives the following values:

8
,f,=°’
, 8

= D, #y (3 + #2) Cof », cos %y,

SN SR EN SN N
N N N 6 N o N

[o e}

S

X

%)

—~

hy X

[

nvm

=

[

=,

x

)

w

_

=]

X

~
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|= o (4 + 4%,

= o Dyy (2 + x5) Cofxy cos ey,
=0,
By, (48 + #3) Gl

= + @y, (4 + ) costn,,

= (48 + #2) [— 2y 200 (4 + 28) + Dy (e 5in 3y COS 25 — 305 G 21 Enf )],

= + D, 2, (>3 + %8) Cofxy cos x,,

= + D, », (%3 + 2%) €ofse, sin x,,

= + D, %, (22 + 2Z) Cof22,,

=0,

= (o -+ 53) [ 30 %y (o} -+ 58) + By oy sim g cos 7y + 5 G 2y Cof )],

== - D, %y (12 4 22) sin? %, ,

= + Dy, (o} + #5) Cofy sinxs,

= -} D, %, (38 -+ x2) Sin 2, cos x%,,

= — D, 3, (2 + x8) cos®x,,

= (58 + #2) [+ %, 25 (22 + 28) — D, (2, sin x, cos %5 + 2, Sin #; Cof 7)),

= O,

= — Dy %, (4 4 B) Sin®xy,

= + D, %, (x} + »E) Sin %, cos %,

= + Dy %, o 4 #§) Sinxy sinxy,

= (§ + 2§) [— %1 %5 (3 + 28) + Dy (— 2, sin 2%, COs %y + %, Sin 2, Cof2y)],
= — D, %, (%% + »3) sin®a,,

= + @, 2, (& + x2) Gindx,,

=o0,

| = + Py (o + #)) Gin x sin

— o (4 ),
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1,27 8
¢ d, Z gl = D; %, (2§ + 3) €0y cos %g,
|1, 2,7, 8 o

o d Z,,h = — @y (f +3) (;afxl sin %,
1,27 8 .

¢, d, ;, gdl= Dy, (163 + 28) Gin 2y cos %,
27 8| by (o + ) Gin g sin g,
c, d: f, h

1,2, 7 8‘=

¢, d, gk 0.

Substituting these values into the subdeterminants
(17) and these again in (16), we obtain, by putting this
expression equal gzero and by arranging the memdbers, the
general buckling condition:
(26§ + #8) [Zo + (Do + P2) Z1 + (¥ + Vo) Zy + (P ¥y + P Wy) Z5 +
+ PPy Zy + (P Wy + Py W) Zs + ¥ ¥y Ze +
+ (@ Py Py + Py Py W) Zy + (P Py ¥y + Py o W) Zg + Do Do ¥y ¥y Zy +
+ By (Zig+ PoZyy + P 21+ Vo Zys + Vo 2y + P Wo Zis + Do ¥ 216 +
+ Dy Py Zyy + Py Wy Zyg + Dy ¥ Z1p + Yo ¥y Zog + Do Po ¥y Zen +
+ D, ¢2W2222 + DWWy Zog + Py W ¥y Zoy + Py D, ¥, ¥, Zy5)| = 0.
In this equation:
Zo = 5y 2 (262 + %) [22 %561 Cae €5 (€0f By cOs Breg— 1) - (265 c§ 6] — xf c} €]) Sin f xy sin fgy],
Zy = ey (oF + #5)? (s €1 €3 C0f Bty sin f ey — 205 € € Sin B2 cos f,),
Zy = 5 o} (1} + %§)2 (31 €1 €3 Sin By cos By + %5 ¢3 € Cof By sin fxy),
Zg =y 20q (1] + #8) [— 21 %5 () & + Cp €9) + (xfcyea°— 2] Co &) Gin By sin By —
— 2y %3 (€3 €1 + €3 €5) €of By cos Bxy],
— %1 % (06§ + #§)° Sin foey sin B,
— 2 22 o8 + #3)3 Gof By cos s,
253 (1] + #3)° Oin By sin By = — i Z,
2y %y (3 + 2§)% (— , €of Bty sin By + 23 Gin fot cos f2g),
o = o3 3 (068 + #8)% (— 2y ©in Py cos By — 2, €of B, 5in fxzy),
Zy =y %9 (05 + 3) [2%) % (€0f By cos Bty — 1) + (] — f) Sin B2y sin fg], |
Zyy =%y %y €1 G2 0 €3(— %5 ©in By cos B3 + 2, €of B26; sin fcy)
+ 2y %05 (cy €4+ €3 83) [ €1 €3 (€0 2y Sin %65 +- Cof (B — 1) 2y sin (B — 1) %g) —
— ¥y Cg &y (Sint %, cos #y + Sin (B — 1) 2, cos (B— 1) x,)]
22 c2 e} [y $in B 1, €02, Eof (B — 1)y — %, Sin P2, sin xy sin (B — 1) %]
+ x c2 €2 [, Sin Bx; cos #gCO8 (B — I) %, — %y sin f 3y Sinzy Sin (B — 1) %],

(18)

I

4

I

5

I

7

NNNNN
I

I

Zﬁ = (3 + 23) [— %% (C1 € + ¢5 €5) Gin T _"11) " sin T —”’1} e

ey 6 <x1 Coi B % sin %, sin (f — 1) %y — %, sin B %, Gin T _“11) x 601(‘8 —”:) "1)

+ 2y Cn el(-— %, Gin B, sin(ﬁ __”'I) x"cos # —x:) 2 | 2, cos B, Sin #, Sin (B — I)xl)],
Z}Z = 2y 2y (%2 + %) [—— %, %5 (€1 &, + €4 25) C0f B _"‘I) 2, 08 @ _f’I) "

%669 (xl Bin fx, cos 7 _”’ sin # —x:) ¥2 _ y, cos B %, Cof %, Cof (B — 1)x1>

X) 2y
—I—x252e1(—xlﬁoiﬂxlcosxzcos(ﬂ— 1)y —

—rysinfrCof g 4y @70,

1) *,
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X
I)"lcos(ﬂ_i)'x xl(Soi(ﬁ ;) sm(ﬂ ”21)~ ]

+ 2 5 %, [”1 ¢y €5 €of i I) "y cye, Gin (B1) %1 o (B—1) "Bj‘-..
%y Ty %,
+ %2 ¢y €, [, Sin P, sin %y sin (ﬂ — I) %y — %y Sin f 2y €0f 2, Cof (§ — 1) 2,]

+ My Ky [51 82(—' 2y @DT ﬂ ¥#; COS g sin (ﬂ ‘—’x:) Xy +

Zi; == #y ¥y (Cl e ¢, 82) [%2 Gin %
16 (B—

(B—1) 2,
—1)x x .
+xzcosﬂx2@:oi . 1@m(ﬁ_;) xl)
+Czel(_xlgosﬁglsln(ﬂ_xi)xzcos(ﬂ )"z+

i (B—1) 2% % .
+ 3y 05 By @in P ! 1@onﬁ_;)%>]
+ 3 caey [#, Sin B3y cos %, cos (B — 1) #y + x, sin By, Ginx, Sin (B — 1) 2],
Zyg= (o} + 23)%[— %, Gin B, sinxy sin (B — 1) 2, + 2, sin f iy Sinx; Sin (8 — 1) %],

Zig =y + 3)? [ — o Gof By sim y "%, cos P 0y
2 2

(B— 1)
+ %y cos By, Sin ® _";) " Gof —x:) %1] ,
Loy = — u3 u§ (5} - 25)? [, Sin B 1, cos xy cOs (B — 1) 3¢5 + 3, sin B2, €0f 2, €0f (B — 1)%,],
Zy = (i} +23) [— 220, 7, &in -x:) " sin (¢ —xi) *

+ 2, (— 2, €0 B #, sin g sin (B — 1) 2, - %, sin f 2%, Cof @ M Gin (8—1) m)

1) 3, P

+ %, <+>c1 Sin B #, cos T _x:) " sin @~ 1% _ %y cos B2, Sinx; Gin (§ — 1) x1>] ,

%y
I) 3,

Zgg = oty %y (#§ + #5) [—-— 2 %y % €of (ﬂ—”:) 1 cos (’3_%3
~- 94 <-— %, Sin f 2%, sin (ﬁ—le) x cos (B—1) 2, —+ 2, cos B %, Cof 2, Cof (8 — 1) “1)

)

+ <"1 Cof B 2, cos x5 cos (B — 1) #y + 2, sin f #,Sin (ﬂ_"l €of B—1) % )]

1) %y %
Zys = 21 %3 (2t C0f f 2y sin B 5y — %3 cOS B %, Gin f27)
— 22 2, (€of (B — 1) 2, sin (B — 1) %, + Cof %, sin x,)
+ 2.9 % (Sin (B — I) #, cos (B — I) %, -+ Sin #; cos x,)
4% (— % Gin f#,5in 2 sin (8 — 1) %, - 7, sin B #, Gof 2 of (8 — 1) )
+ 52 (— 2, Sin B #5008 %y c0s (f — I) 2y — 2y 5in f 2, Gin 2, Sin (f — 1) 2,).

Fror this general dbuckling condition there can bde
derived a number of speclal cases concerning the bound-
ary conditions which, however, can only be solved with
a great amount of calculation. In the following we sghall
discuss and evaluate numerically two simple limiting
cases, namely, hinged and fixed longitudinal borders, re-
spectively. .

b) Hinged longitudinal bordersg.~ For hinged, but
rizid mounting (w =Aw = 0) of the longitudinal borders

M=0 and MN=1b/b =8, we have T =TT, =0 and Jno
= J‘na=°'v 80 tha.t -

\Vo=\l’”0' ‘bo’¢8
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After dividing equation (18) by the factors &, and
0} the buckling condition becomes:

(M)

(K12 + K2%) [2, + &, 2,,] =0
or

- KyKy (K24 k%) sinh BK, sin Bx,
+ ® [=k; sinh B K, sin Ky sin (B=~1) Ky + (19)
+ Ky sin B K, sinh kK, sinh (B~1l) K,] =0

in which the factor (K;% + K32®) has been left out, as
it cannot become zero according to hypothesis.

For the limitation, that the ratio of the field
widths b,/b, is a real fraction, a further splitting of

the buckling condition (19) is possible, This limitation
is given by

b, = rt, ba = s

in which r, s and r+s = u are positive whole numbers.
With

K K

—~1 = ! 22 = !

r Ky r K’B

the buckling condition (19) becomes

~k Ky( K2+ Ka®) sinh w Ky' sin u Kp'

1

+0, (= k; sinh u Kk, sin r k' sin s k' (20)

+ K, sin u K, sinh rk,' sinh sk ') =0

or, since the left side contains the mutual factors
sinh Kl' and sin K,'

-

s 1 s ]
v o3 ' 2 2y sinh v K;' sin u K,
sinh k,' sin K, L-Klna( K5+ Ky )

sinh K;' sin Kkp'

sinh u K,' sin r k' sin s Kp!

+ - + 21
®1 ( ®1 T51nn Ky sin Ky' (21)

+|€2

sin u K,' sinh r K,;' sinh S_K1'> o
sin K sinh K,'
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in which the quotients in the large brackets are related
termss.- . ... S

The ouckling condltlon (21) is satisfied by putting
each factor on the left side equal zero, so that 1t splits
up in two buckling conditions, after dividlng through
sinh K,' (since by hypothesis sinh K, ! # 0), which. cor~

respond to two basically different duckling forms.
The buckling condition
sin k' =0 | (22)
is independent of &,; 1its solutions are
Ky = 0, rm, 2T T eesse

The solution Ky, = O cancels by hypothesis; to the remain-
ing solutions belong the buckling values

\ 2 .
= p2(XT X 2 (2r_m
kl --1 (v + r'ﬂ' s 41‘ (U +2r Tf)"..
and
= p2ga (rBo _m O\ An2a2 (2rBa m \2
k = r®p (m * $Eg ) 4res B o 2rsa)"" (23)

respectively,

These, however, are the samc buckling valucs for which the
nonstiffened plate with the ratio o« 3in the T-direction
buckles with (r + s), 2(r + s)... and in g-direction
with m half-waves. (See reference 2.)

Along the stiffener there is formed a nodal line, so
that the stiffener is twisted but suffers no bending. The
dimensions of the stiffener therefore are without influ~
ence upon the buckling stresses, according to (22) because
of the neglect of its torsional stiffness, These buckling
stresses are, in general, so great that, practically, they
oceur very seldom. (Comparc with this the following exam-

Ples: longitudinal stiffener in the distance b1 =3 b

1
and b, = z b, respectively). In most cases, plate and

stiffeoner buckle at the same time at small Xk values, which
are obtained from the buckling condition:
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-(Klg + Kaa) —
(24)

o (sin r Ky' sin s Kp'! . sinh r k,!' sinh s K1'> -0

1 : ]
Ky sin u K, Ky s;nh u Ky

formed by putting the last factor in equation (21) egual
to zcro.

Not considering the higher buckling stresses, the
buckling values grow according to (24) as the stiffness
Y, = Y increases (see following examples) and reach af
Y = ©3 1l.ee, for a knife-edge mounting of the plate along
the stiffener, their maximum values. Since at Y = o

o, = «, the buckling condition for knife-edge mounting

along the stiffencr is obtained from {24) by placing the
factor of o, equal to zero; the buckling condition is

therefore:

gsin r K,' sin s Kp! sinh r ®K,' sinh s K,!
- S .8 : 2 + .1 ' 1 - O (25)
Ky sin u K, Ky sinh u Ky

c) Exa nples:

1. Longltudlnal stiffoner spaced at D, = % b and
b, = % b, respectively.~ Having one longitudinal stiff-
ener at b, = g (r =1, s = 2),. the buckling stresses
are, using (22) and (23), respectively,

2
3 m 6a
- — ——— q *vee
k 9 m + 3@) ’ 6 < + 6&

In this, the first term (buckling form: 3 half-waves in M-
direction (see fie. 3,I) contains the minimum values k =

9%x4 = 36 with én% = i.es, for the ratios o = 1/3 at

1-
n=1l, ao=2/3 at m 2 e For a longitudinal stiff-
1

b/4, the corresponding buckling

o

ener at a distance D
values are

LY

. 2
o m) . 2 64

k. = 16 __IIT + Za

The buckling stresses according to (24) and (25) (buckling
forms, sce fig. 3,II), are calculated for the same values
of Y and & and plotted against o in fisure 4. These
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buckling stresses are, even for Y =e, essentially smalle
-er; than the ones from (23) with- the minimum values k =
36,and 64, respectively, so that the buckling- conditidn a
(22) has no practical significance.

The buckling-stress curves from (25), i.e., for Y =
® (figse. 4 and 5) have no points of inflection, similar
to the axes for Y = 8 = 0 .-(nonstiffened plate), but each

. . Lo b 1
has only a2 minimum (k = 10.6 for -3 = 5’ k = 8.56 for
1 . L : ~
l = ) so that the plate buckles in ¢-direction in the

sequence 1,2,3 ... half-waves for increasing wvalues of «.
However, for finite wvalues of Y some of the curves have
points of inflection; for ¥ = 10, in the examples, the
curve even has a maximum and consequently, two minima.
From this fact follows that the plate in the, example

b,/b = 1/3 ‘and Y = 10 buckles for increasing values of

the ratio o, in the following sequence of the longitu—
dinal waves m?

8 = 0 ‘ 8§ = Q.l
0. <o < 0.95 m=1 0. <o < 1,00 m = 1
0.95 <« & < 1,49 m= 2 1,00 <« @ < 1.26 m = 2
le49 <0 < 2.3 | m =1 1.26 < @ < 2464 | m =1
2.3l < a < 3,02 |.m = 4
etc.

Corresponding relations are shown in the example bl/b =

1/4 (fig. 5). PFor large values of o the curves in
their range of valldity approach gradually the value of
the minimum with the smaller ordinate.

In tadle 2 the smallest buckling values k are given
for the ratios o = 0,6, 1.0, 1.4, 1.8. For the accurate
calculation of the numerical values the tables of circular
and hyperbolic functions by Hayashi (Berlin, 1926) with
seven and more figures were used,
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TABLE 2

b,/p| Y| 8 : - & : :
0.6 pis} 1.0 m l.4 m 1.8 m
0 9.849 | 1| 84959 1| 1 7.852 | 1| 7,756 1
5| 0.1 | 9.796 {1 | 8.413 {1 7.009 | 1| 6.808] 1
1/3 0.2 | 9.735 |1 | 7.86111 6.293 | 1|'6,045 ] 1
0 10.215 | 1 | 10.697 | 2 |10.,244 |2} 9.754 | 1
10| 0.1 [10.201 |1 |10.652 |1 9.549 | 1| 8.658 ] 1
0.2 [10.186 |1 |10:323 |1 g.742 | 1| 7.747 | 1
0 8,062 | 1| 7,015 |1 6.643 | 1| 6,997 | 1
5| 0.1 | 8.032 |1 ] 6.808]1 6,181 | 1| 6.441 | 1
/s 0.2 | 7:999 |1 | 6.539 |1 6.751 | 1| 5.909 | 1
0 8.362 |1 | 8.266 |1 8,096 | 2| 8,182 | 2
10| 0.1 | 8,317 |1 | 8.128 |1 7.786 | 1| 7,659 | 1
0.2 | 8.308111 7.979 |1 7.368 | 1] 7,104 1 1

2e Longitudinal stiffener in the middle of the plate.-—
If the stiffener lies in the middle of the plate (b; =

%s r = s = 1), the plate bduckles according to equations

(22) and. (23) with one nodal line in the middle at the val-
ues .

k=4: —Z-g'*'-—{n— L) . (26)

the Tinimum values of which are k = 16 at the points
=% (m=1), a=1(n=2), etc, -

The corresponding buckling forms are antisymmetrical
to the center line T =1 (fig, 6,I). The buckling con-
dition (24) changes into* .

*The buckling condition (27) is also present in the gener-
2l solutions by Lokshin (reference 13), in which, for the
special case of an arbitrary number of equal stiffeners
equally spaced, only the symmetrical buckling forms are
considered. While in our case - same as in certain cases
for plates with an odd number of longitudinal or transver-
sal stiffeners -~ the antisymmetrical buckling cases can be
derived without difficulties from the symmetrical buckling
cases with respect to half the plate width or leneth, this
cannot be done at an even number of stiffeners. Byt the
antisymmetrical buckling cases give in certain regions the
smallest Duckling values, as will be shown later at exam-
vles of a plate with two longitudinal or transversal gtiff-
eners,
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, Ty - h tan K PP
-2 (k.24 Ka?) + 5, (ta.nK Ky - é) = 0 . (27)
R T : 1 2 :
in the l1initing case, Y = w, it becomes
tanh kK, tan Ky f -.<28)

Ky Ka

Equation (28) agrees with the buckling condition of a plate
with the width b/2, one longitudinal border of which is
hinged and the other fixed (reference 8), so that the cor—
responding buckling form is symmetrical to the conter line
NM=1 (fig. 6,1Ib).

Timéshenko (reference 2) calculated the smallest buck-
ling stresses for the plate with longitudinal stiffener in
the middle by means of the energy method.

Contrary to the example with one longitudinal stiff-
ener at a distance b, = b/3 or b, = b/4, in our case,

b, = b/2, the buckling form with the nodal line at the

stiffoner is of importance. With increasing Y, at first
(27) gives the smallest buckling stresses, until at a cer-
tain value of ¥, which may be denoted as minimum stiff-

ness (,34,Y)., the same buckling values as with (26) are

obtained., An increage of Y does not lead to a further
increase of the buckling gtresses, as the smallest buck-
ling stresses are then obtained from the duckling condi-
tion (22), and (26), respectively, which is independent of
Y, and for which the plate buckles with one nodal line at
the stiffener. Hence the value pijn¥Y 1is at least required

to get the maximum value of a plate with longitudinal stiff-
ener in the middle. The minimum stiffnesses have been cal-
culated numerically by the author in a special paper (ref-
erence .19). :

%. Dependence of the buckling stresses on the posi-
tion of the longitudinal stiffener.- The dependence of the
buckling stresses k on the ratio 1/o, is shown in-fig~

‘ure 7 for the square plate, for different values of Y (at
8= 0), according to (19)., PFPor reasons of symmetry, the
curves run symmetrical to the center line b; = 095. In the
case of the stiffener lying at the border T =0 (b,/d = 0),

the buckling values for every value Y, with any but fi-
nite maenitude, are equal to those of the plate hinged at
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the four sides; thus, Xk = 4 (for one half-wave in longi-
tudinal direction), and k = 6,25 (for two half-waves).
However, for Y = o, the border T = 0 1is considered as
built in, as the buckling stresses in this case take the
values k = 5,74 and k = 6.85, respectively, of a plate
fixed at one longitudinal border and hinged at the other
points. The buckling values increase for increasing bor-
der distance b,, depending upon the magnitude of Y.

For knife-edge mounting along the stiffener (Y = ») the
curve (for m = 1) reaches its maximum value k = 25 for
bl/b = 045. To this value corresponds a dbuckling form with

one nodal line at the middle stiffener., The corresponding
maximum value for m =2 1is Lk = 16.

Both curves intersect each other_at the poiat b,/b =
0.16, so that for border distances Ei < 0.16, we obtain

the smallest buckling stresses for one longitudinal wave,
: b
and for border distances f; > 0,16 for two longitudinal

waves. The full line (see fig, 7) consisting of these two
curves, which contains the smallegt buckling values for

Y =o, represents at the same time the upper limit for
all buckling stresses occurring in practical cases.

For values Y < Ypi, (for instanece, Y = 1,3,5 in
fig. 7) plate and stiffencr buckle in the entire region
with oneé longitudinal wave. With the value of the minimun
stiffness, that is, in this example, Y i, = 7.23, accord-
ing to table 2 of reference 19, the maximum value k = 16
is rcached at the point b,/b = 0.5 with m =1, For vale-

ues Y > Ypipn in a mean region, the magnitude of which

depends upon ¥, the buckling valucs for m =2 longitu-
dinal waves are determining,

] In the neighborhood of the center of the plate the or-—
dinates of the curve for Y = Ypi, are practically equal to
those of the limiting curve for Y = o (m ='2)., In b,/b =
Oe4, the difference only amounts to about 2.5 percent.

For a stiffener near the middle of the plate the same is
true, namely, that an increase of the stiffness over the
value Ypin does not have as a result an increase of the

buckling stresses,

d) Fixed longitudinal borders.— With borders T = O
and M = b/b; = B Dbuilt in, the values
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. JnO = an = TO = T = o
and at the same time
@0 = @2 = m, \lfo = v‘ya = o

Dividing the general buckling condition (18) through
the factors &, ¢,, Yy, V¥, the members containing these

factors in the denominator are, with the values above,
equal to zero and the buckling condition becomes

(ula + K,2) (Z4 + o, ng) =0
or

Ky Ks (K,2+ K8 [2k,k,(cosh Bk, cos Bky—=1) +
+ (k%= K,®)sinh Bk, sin BK,]
+ 0, {nlna [k, cosh Bk, sin Bky=k, cos Bk, sinh Bk,]
~2K2 Ky [cosh(B=1) Kk, sin(B=-1) K, + cosh Kk, sin K,]
+2K; Kz2[sinh(B-1) Kk, cos(B=1) vy +sinh Kk, cos K, " (29)
+k,2 [« K, sinh Bk, sin Ky sin(B=1) Ky +
+ Kp sin BKky cosh k,; cosh(B-1)x,]

+ Ky2 = Ky sinh BK; cos Kz cos(B-l) Ky =

~ Ky sin BK, sinh K, sinh(B—l)K1]}"=O

. In case the stiffener lies in the middle (B =2),
the left-hand side of the buckling condition may be reduced
to the product of two factors:

'{Ka sinh K, cos Ky = K; cosh K; sin K, }X
X{Klna (k2 + %, %) (K, sinh K, cos Kg+ Ky cosh K, sin Kp)p (30)

+ @y [k, ko(l=cosh K, cos Kg)+ V2 ginh K, sin Kg]}>= 0

o

so that two buckling conditions are formed which are inde-
prendent of each other.
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l. The buckllng ¢condition which is formed by put~
ting the first factor in (30) equal to zero:

Kz sinh K; cos Kz ~ Ky cosh Ky sin Kz =0 (31)

ig independent of @, and agrees with the buckling
condition for a nlate of the width b/2, whose one lon-
zitudinal border is hinged, the other one being fixed
(reference 8). The corresponding buckling form con-
tains therefore a nodal line at the stiffener. The nod-
al line is identical with hinged mounting of the plate
at the same point (antisymmetrical buckling with respect
to the axis N = 1).

2. By placing the second factor in (30) equal to.
zero, the buckling condition

'\
Ky Ky (K32 + K% ) (Ky sinh Ky cos Ky +
+ Ky cosh K, sin Kk,) +
S (32)
+ &, [k, Ky (1 = cosh Kk, cos Kp) +
+ v2 ginh K, sin Kp] =0
»

is formed, which gives the buckling stresses of plate
and stiffener (eymmetrical buckling with respect to the
axigs M = 1). To the limiting case @,.= O corresponds
the nonstiffened plate fixed at the borders T =0 and
N = 23 the corresponding buckling condition becomes:

K, sinh K; cos Kz + Ky cosh K, sin Kz = O (33)

from equation (32), reference 8.

In figure 8 thé buckling values k are plotted
against the ratio a¢ A comparison with the correspond-
ing buckling curves for hinged longitudinal borders shows
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(reference 14) that the antisymmetrical buckling form
. With built-in borders is already determining for consid-
- erably smaller values of Y than for hinged longitudinal
borders (reference 19).

4e Plate with two longitudinal stiffeners:

a) General buckling condition.- The investigation

i o i e S e e o e e s Do D T e R I P

of the rectangular plate with two longitudinal stiffeners
(r = 3) is limited to the case of all four borders hinged.

We have
Toz'I' = 0, ‘Yo=73=m
and therefore,

\yo::\ljsz:o, (Doz @3:00
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@ b c d e i ) ;.
Gl 4, B, C, D, 4, B,
I (9”) I T } l
2| ") a — |
3] (z2%) Ginse Cof %, sin s, COS 4 — Ginxy —Cofx '
—
41 (14" %} Gin 3 Cof %, —x}sinsx, | —xfcosx, — s Ginxy —x3Cof%, |
3 51 (139 %, €of %, %, 'G’in % %5 COS %4 — 2, Sin %, ~— 36, €0 2, — %, Sinz,
, — Qo | — ) Sing #§ + COS 34 — x§ sin x, s 4 s
61 (150 | | & Ginw, | + B1Cofn, | + Pysinz, | + P, cosxs + #} Cof %, + x} Ginx
2| @29 Sin ig‘_ﬁ_xl Cof b, 2— by
1 1
8| a4y " ginb_xz_bi,ﬁ 2 of Dkl
of 3 s Gof 2 E ”z a | Gt |
1
| |
L I
| —Cof 2 B | e Bth,
1ol (159 1
+ &,&in 1,2 bl+ 2 5, | + @, Cof b‘jb‘x,
N 1
I |
Tr | (x17) .
iz | (10”)

so that the boundary conditions (8°") to (111') simplify

to

Y1=0:
Yy =o,

(9")
(8")

Y3= o,
Yy=o0

(11”)
(10%)

The transitional conditions between the fields 1 and 2
are the same as for the plate with one stiffener (table
1); corresponding equations are obtained for stiffener 2.
The 4 boundary and 2x4 transitional conditions fornm,
with the solutions:

2
3 3

the deunominator determinant,

the following:

w, = Yysinv§,
2

Y1
H

determinant becomes

(o4 -+ "2)

The subdeterminant
the lines 11l and 12,

I, 2
b, d

— @oi

= (2% - 22) <@m #y sin —— b

b
7 sin —— 5, %2

3

1,2

b d|’

1,2
b,4

¥a

b, i, 1

k,

’II, 12| . b
——@m»—ulcos

11, 12

3

3 3

A1®mx1n + 31 Cojuyn + C1 sinx,n -+ D1 CoS ¥,

shown in table 3, from
which the buckling condition 1s obtained by putting it
equal to zero,

The solution of the determinant is briefly given in

+ (Sof B 10085

(34)

b
'b_‘ 2
b
b,

11, 12
i, m

11, I2

s k, m

)-

After eiiminating the lines 1 and 2,

the

becomes, after elimination of

(33)
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g b i k P .oom
Cy . D Ay . B, Co | D
— sin %, —- COS %
+ z}; sin s, -+ %3 cos x,
%3 COS %, =4 x4 siﬁ %y
— x} COS %y + ] sin.xy
bt b by+b b+ b b +b
sin—b‘;;—b'x, cosﬂ%;hx, —Gin—1—* b‘+ 2 sy —(ﬁo[—‘—;;——’ %, |—Sin Ibl 2 25 |— cos 5 2 2y
b b+ b b,+ b
—x} - sin bl';; b‘x. -—x}cosbljb’x, — Ginblz_-b'x,‘ (En[b1+ 2 5¢, |42} -sin l_l: 2 ¢y +x3-cos—‘;‘—l—’x,
1 . 1 1
b . b+ b
x'coskl—;-—b’”’ _"’Sinﬁ%;b!" —, Gof bl+ ity [ —a Ginbl_btb.’ﬁ -—a‘e.coﬁbl-b'-1 Y5ty +x,'sm—lz—T’m
1 1
by+ by . b+ by
+x}cos 2 %y | - sin-t——x, . b ' B
2 blb 2 b b1b +9¢'¢D’b1+b’ +5¢26inb1—-£-b—’%1 —xg-cosblj Ix’ +xg-smb1'lb_1 .%’
+(Ii,sinb1+ 25y | -+ Pycos 1t 22y 1 i
b, b,
b . b b
Sin - b1 * QZo[En, Smb_,”’ cos—lz
. b b
*3 Gin%xl *} Coi—bb: %y — 33 sin 3::4, —23 cos—bTx,

Since the lines 11 and 12 are independent of the lines
3 to 6, the four B8-line subdeterminants in (35) with

r = 1’1: and

g =l,m (rof

eliminating first the lines 3

bd, r, s

1,211, 12:‘ — (x§+%’)[ - Sin g, sin %y (

+ Sinx, cosxy (,3' I

The nine subdeterminants eecurring in this equation be-
come, after eliminating the lines 5 and 6,

3:
a,

a)

+lodl
3 hl) + @'ofxlsmx,(

and 4, as

4

3.4
e fl

—FA)+

e g

g,) —+ Cofa, cosxg

Fil

may be written, after

(36)

o| = %1% (o] + 24) (—@ofxlcosu,|5’ ,—@vixlSInx,,5' 6l+
+6mnlcosx, I+@m"15m"’|f hl)

gl_’&"s("l +24) (@oixlcosx,l ‘_@""‘1005":[5’ 6l)+
+¢1(%1$Dfx151nx’|5’ "1@1‘”‘15“1753'5 l""’s’“"‘-ls,’:);

:_: = 12y 24 (o3 + 5J) (@pixlcosx,';: gl-{-’ Cofs, smx,‘S, l

+ d?1 (961 Sindax, l_‘i?;'l— %, Gint 2 cos oy E'_il— %9 Gitt 2y sin %, l 5 l)
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g = 1% (] + #3) @301'xlcos;¢z ’_}. |
+¢1(—x3@inx1§osx,l5’ |+x1@01,,15m,‘2|5, I)

— 1ty %05 (42 + 52) ((&bixlcosles hl_ @mxlcosx_zj, h‘)
+<D1(x1(s:oix1sin x2}§: hl——-m@tnxlsinxz > 2! +xzsinx2cosx2’5’ |

— sy ey (42 - ) Gl cos g |3 6| +
+¢1(—x2@inxlcosx2,—zT21+x1@ofx,_sinx2l—i’—2'),

_==axAﬁ+a@(@Macmn;53y+sﬁaﬁmx4§fb

+ @, (xI@mxl(soixl{f* }—xzemxlcoslef l—x,@mxlsmx,f h’)

= 2y %g (%3 + #3) @Iofmlcosw2 ) gl +

. 8| o 5. 6
1+ (%1(501"1 sin ”2'!:, .g| ngm’ﬁcos%z’f, ¢ >’
5, 6
= 5y %5 (36§ + %) @"f"l°°s"2|?, h’ +
+¢;1(_,;2@1nx1cosx2'§‘ h‘—l—xl@DT’ﬁ-smxz 5/ h‘)

Substituting these terms in the subdéterminant (36), we
obtain, after arranging the equation:

1, 2, 11, 12

— () pambd A Y T

b 31 4: 57 6 : M 3: 4: 5: ’
+d)1(—x_151n2%2 e g—|—x @mxlsmxz\a oz b +

(37)
+3, Ginxy sinxy 2 ': 2’ I,l+% Ginzxy |3 4 > ’+

aceh

——_- > 42 D 6
B A

The celculation of the sn'bdeterminants of fourth order
on the right-hand side gives, for the various values of

g8, +the following equations:

O™ h"O\\O\h

=1

= — 2y (12 + x3) dizﬁ,fofm x, cos & Z LA
= 4 2, (12 + #3) D, Cof2 22 b1+b, %,

= — % (4 + ) aizcosz_x;lh,,z,

= (o} + ) [—%1%2 (2 o) +

-+ D, (xz Sin & 2_ by #y (&be:—b’xl — 2, sin by ;' by *q cos#%)}-
1 1 1 1

= —x (4 +4) @z@r)i—b‘;:b’ %, Co8 b‘;: % s

6

h
S=m:
6 b,+ 5 . b

f =% (x1+"2)¢ @Df 1+ ’;‘1511—121_2_;_’”2,
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31

» 4.5 6 . . «-b b . b b
i ': De hl=—-—z,(x§+z§)¢,(\.m "I: % %, sin ‘Z; L %y,
3. 6
la) :’3 e —+(/1 +"’)[" xg (#} +x3) + o
+ @, (—-zzsm ‘+b’x Coj b‘+b’x1 xlsmb‘+b'x,¢osb‘+b’x,) ,
i b [ Toh !
3, 4. 5 by +b - '
I“ 1 5, hl——xl(x,—f—x;)d)gsm’ 1+ %,
345 6 __ ..
a, ¢, g, h'_o’
r==Fk s=I:
>4, 5 6 . ~
Z ‘:‘: i ‘ |=—xz(x§+x§)¢2,$mb‘+b’x1cosb‘°b*_b’x,,
» » » l
|34 5 2= 6a + ) fame 04+ +
b, + b
+(D2(x2\,m ‘4; ’xl(Soib‘+b’x1+xlsmb‘;;b’x,cos ‘;:b'x,)],
13, 4, 55 6'_
a ¢ 1 g™ 0,
3.4.5 6 . gby+ b
Z t 5f A = %y (o} + 3) (Dz@mz_l% 1,
i3, 4, 5. 6| __ o b+ b b, +by .
]a, ez b= — i+ D, C.',m—‘—bl——’xlcos_——»—‘b1 2 %y;
r==Fk s=m:
3, 4,5 6|_ .
343 Ol — (o + ) @, Gin 2 0y sin 2 P,
3.4.5 6 .
345 Ol — oy (04 + #3) By sin® *;,t 2,
3. 4.5 6| __ . 26+ b
R e R LA L
3. 4.5 6]__
ac f k=9
+ 4, 5 6 . b .
535 51 480, Sin i i,

Substituting these subdeterminants in the four terms

(37) and those again in (35) and (34), respectively,
the following general buckling condition is obtained

after multiplying out and arranging the corresponding

terms by _
o -+ o)t (— ot (4 + )* Gin - sin
+ 2%, (x{ + 3) [d)l —xleing—xisinx,sin b’;:;b' %g -+

+ x4 sm—x, Ginx, Sin 25— by +b’ xl) _

bl+ ax: b|.+bl

+¢,( xlémbxlsm sm——x,+x,sm x,@m
+¢1¢{ Gm—-xlsmx,sm%—x,sm e

—ngsm—x,@mxl 6m—x1 Cm—

Tk [smx, @m (Cm bl+b”‘13m .Zb’ 2y — @inxl'sin%’;xz

|

+ €inx, sin :—lx, (sm by ;};b, %y Sin i;{)i’ﬁ — sinxg @i“%’ﬁ)]})

e @m

0.

)]

|

(39)
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placing this determinant egual to zero.

b) Two_stiffeners, being symmetrical to the center
line N = b/2by. with equal dimensiong.~ For two stiffens
ers being symmetrical to the middle TN=b/2b, with equal

cross sections and moments of inertia, @1 becomes

@1 = @2, and. bs = bl
so that the left-hand side of. the buckling condition (38)
can be simplified with these values and can be written as
a product of two factors., With /b, = B, the buckling
condition becomes
‘{f* KoKy (K,% + K,8) sinh BK, sin BKp h
+ @, [- k, sinh BK; sin Kp sin (B - 1) kg, +
+ Ky sin B Kz sinh K, sinh (B = 1) Kl]}
S (39)

X {K1Ka (k.2 + K2) cosh BK,; cos Bkp

+ 0, [k, cosh B K, sin Ky cos(B = 1)y = .

- K, cOs B Ky sinh K, cosh(B -~ 1) Klj} =0 3
Since each factor, placed equal to zero, satisfies the
equation, we get

le = KKy (K2 + Kp2) sinh BK; sin BKp
+ @ ‘[= K, sinh B K; sin Ky sin (B=1l) Kp+ (40)
+ Ky sin B Ky sinh Ky sinh (B-1) Ky J= 0

This bucklling condition agrees with one for a plate of the
width b/2, hinged at the longitudinal borders, which is
stiffened by a longitudinal stiffener at a distance 1 = 1.
(See buckling condition (19), p. 14.) At the point 1 =
B/2, therefore, the boundary conditions for hinged mount-
ing are satisfied. Thus the dbuckling form for our case
with two stiffeners in the middle of the plate contains a
nodal line. The buckling condition (40) therefore gives
the buckling stresses for duckling antisymmetrical to the
center line TN = B/2.
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2+« The buckling condition:

K Kz (k.2 + Ku2) cosh B Kl‘coé B Ky
+ &, [k, cosh B Kk, sin Kz cos (B = 1) kp =~ (41)
- Ky cos B Ky sinh k, cosh (B = 1) k,1 =0

contains the buckling stresses for buckling symmetriecal
to the center line T = B/2.

l. DTwo longitudinal stiffeners at equal distances.-
For two longitudinal stiffeners with equal dimensions and
equal distances (b, = by = by = b/3) the buckling condi-
tions (40) and (41), after being split up into factors,
ehange into

K K
sinh =1 sin 7% [— th,® + K%Y +

2
+ @1( sinh K, . - sin K, . -0 (42)
Kk, <5+4 sinh?® —23-> g (3-4 sin? —é%)
cosh %% cos %f[;~ (K, + Ky2) +
sinh K, | sin Ky \]= 0 (43)

* ®1( K - ( K
g2 Ta. . 2 22, )}
Ky (4.- cosh =5 3) Ky \4 Cod" —5F =3

or, if again equating each factor to Z6TO0, Whgreby the fac-

tors sinh %?‘ and cosh %? are omitted, since they can-

not approach zero, according to assumption:

. Ka _ ) Y-
sin -% = 0 (44) (

antl-

Cm(rPERE) 4 : S

_ ‘ : ' \ , met-
o sinh K in K : . rical
+ Q) — b —— 2 Beie =0 (45) | Dbuck-
. n1<:3+4 sinh? ~21> Ko (z-z;_ sin® -_23) : ling)

J
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-

K
:c05'2f = 0 : (46)
(sym-
a ' S met-
-(ng+ Kap ) -+ F rical
. . o . buclc=-
+ 0, sinh ®, - sin Ko =0 (47) ling)
K K, -
2 1. 2 _2 . >
K1<4 cosh 5 3) H2<4_00s 5 3 J
To the solutions of (44)
K .
""2“2‘ = T, ,2TT, 3T wese
which are indevendent of ®,, correspond the antisymmetri-

cal dbuckling forms with nodal lines at the longitudinal
stiffeners, The buckling stresses corresponding to the
first value K, = 2w are
v » ~, 2 fad
k=36 (8% + ) yinima: Lk = 144 for 5% -1
m 8o n

The buckling form has 6 half-waves in N-direction (fig. 9,
Ia). To the following solutions of Ko correspond buck-

ling forms with multiples of 6 half-waves. Those values
are higher buckling stresses which cannot be taken into
account for thisg calculatione.

To the solutions of (46)

ke _m 3w 5w
2 ~2' 2 g2 °*°°r

correspond the symmetrical buckling formsg with nodal lines
at the longitudinal gstiffeners., The duckling stresses of
the first value are

[N}

2
k =9 (29 + EL\ Minima: %k = 36 for =22 =1
m Bo s m

The buckling form has 3 halfewoveg in M-direction (fig.'9,
Ila)s The following solutions of K5 also give higher
buckling stresses, since to them correspond dbuckling forms

with multiples of 3 half-waves, The cquations (45) and
(47) give the buckling stresses for the buckling forms sym-



-

NA.C.A. Technical Memorandum No, 904 35

metrical end antisymmetrical to the axis = B/2, at
which the plate buckles with the stiffeners (fig. 9, Iv
and IIb).

In figure 10 the -buckling stresses for ¥ = 5 and 10
are plotted against the ratio '«s For small ratios (a <
= 0e4) the buckling condition (46) gives the smallest
buckling stresses, for great ratios the buckling values
have to be caleculated from (47)., Besides that, for small
values of Y (in fig. 10, for Y =5) at ratios o« = 0.4
to 0.7 the antisymmetrical buckling is calculated from (45),

Timoshenko calculated approximate values for this case
using the energy method and put them together in a table
(reference 20), but the table is set up only for the sym-
metrical buckllne cases according to (46) and (47), not for

the antisymmetrical buckling form from (45). Several nu-
merical values in the table are therefore too great. For a
comparison in figure 10, the curves for ¥ =5 and Y =

10, respectively, and 6 = 0.1, which correspond to Timo-
shenko's values, are shown as dotted lines, The values of
the approximate solution are slightly greater than the ex-
act values from (47); however, with increasing ratio a,
the differcnces bocome smaller, The sclutions by Lokshin
(reference 13) are also incomplete ag they only consider
symmetrical buckling,

2. Stiffeners at small distances symmetrical to the
center linc.-~ With welded structures the case may occur
where one longitudinal stiffener is split up in two, each
half being on a different side of the plate but both at a
small distance from ecach other (fig. 11), in order to avoid
lapping of the welding seams. The bduckling stresses can De
calculated from (40) and (41) if both halves of the stiff-
ener are symmetrical to the middle. Since b, is small
against b by hypothesis, the buckling stresses for anti-
symmetrical duckling (fig. 11,I) increase as b, increasecs

for, in the limiting cases b, = 0, the plate buckles like

the nonstiffencd plate with a nodal linp, whereas at an ec-
centricity b, also the stiffeners are bent and therefore
the res1stance again t buckling is greater. -The dbuckling
stresses therefore remain on the safe side.if those of the

limitineg case ba = 0 are used., However, the buckling

stresses for symmetrical buckling (fig. 11, II) decrease as
b, increases. For the example of the plate with the ratio

"o = 1y and the stiffener with Y = 2.5 (86 = 0), the buck-

ling values are, from (41)
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be/b | O | 0.05] 0.10| 0,15
x | 11,06 | 11.06 | 11.05 | 11,00

The differences between the Xk +values are small, so that
if no greater eccentricities are in question, the buckling
values of the limiting case D, = O can be used.

III. PLATE WITHE TRANSVERSAL STIFFENERS

1. General principles.- The rectangular plate with
transversal stiffeners at the points x =a,, X = a; +

g ess (fig. 12) consists of r plate fields with the ra-
tios '

(a = % = ratio of the whole plate).
With the notations
t = %, n = %, Ox = = ® Og (ge = %g% = Euler stress)

the deflections w of the center cross section of each
plate field i, on account of the compression stresscs at
the transvoersal borders ¢ = O and ¢t = @, satisfy the
differential equation (2), in which the value @, 1is to
be renlaced by o, according to the notations mentioned
above.

Assuming hinged (w = Aw = 0) longitudinal borders
T =0 and TN =1, the differential equation (2) in each
field 1 1is satisficd by

wy = X5(€) sinng v N (ng = 1,2,3 ves) . (48)

by which the bending area in T-direction is assumed to
have sine shape. The function X3, only dependent on ¢,

is obtained from the common differential equation

Iv
Xi + (m2p - Enia m®) X, o+ ni4 m X, =0 (49)
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-the generwl solution of whidh is-

xi-Ai sin Eik +Bi cos ﬁik +Gi gin glxa+Di cos Eihap  (50)

with (~/¢ x J/p = 4ny (p > 4n;?)

Since for every field according to (48) there exists a
sine~shaped (in T~direction) bending aresa, the number of
half-waves in M-direction must be the same in all fields
(ny = n) Dbecause of the steady connection of two adjoine

ing fields. Of all values n the minimum values of the
buckling stresses correspond to n = 13 therefore, the
following general deviations are calculated with n = 1,
With the aid of the four boundary conditions at the borders
¢t =0 and ¢t = o and the 4(r - 1) transitional condi-
tions at the (r = 1) stiffener we can set up 4r homo~-
geneous equatlions, from which the buckling condition, and
from that the bucLllna stresses o} = k 09 can be calcu-
latho

2. Boundary sad trangitional conditions.- At the bor-

ders ¢ =0 and ¢ = o, rizid and hinged mounting is as~
sumed; therefore, for ¢ = 0
7wy, =0 (51)
, bw, =0 (52)
and for t= o .
w, = 0 (53)
Awp =0 _(54)

At each stiffener i, i1.ee, fOor ¢ = a; + Gp + eee *+
a;y [1 =1 to (r - 1)), the following transitional con-
ditions must be satisfied:

1. The geometrical conditions for steadiness require

Wi o= Wivy | (55)
oWy _ OWji4,
St = TS¢ (56)
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2. Neglecting the torsional stiffness of the stiffen-

ers, the bending moments me¢ of adjoining platé fields 1
and 1 + 1 at the stiffener 1 are equal, l.e.

2 2 2 ’ 2 .

D (2 Wi o Wi D (3 Wity -3 Wi+
w2 (8 Fiy 2 e e 2 (S Witz , 0 Tida 57a
2 32 B 3TP o2 3t B 3T ( )

Since on account of the steady connection the curvatures in
N-direction at the stiffener must be equal, i.e.,

2 a
o LE 3 W4

an®  an® o)
equation (57a) changes into

CHE I ER (57)

aES - aga

2. Considering the plate fields 1 and 1 + 1 as
cut off along the stiffener i, the transversal loading

- of the stiffener must be put equal to the difference of

the reactior forces of the two plate fields, at which the
deflections of the stiffencr must be assumed to0 he egual

to the deflections i or i + 1 at the point ¢ = o, +

g + oes + a3« Denoting the moment of inertia of the stiff-
ener about the f-axis by J3, we have the equation:

s 3wy p (W (2ep) 208
i ans ¥ L 5¢2 YT
3 3 -
O Wity 3 Wi+1]
—————— - (2-p) it 53¢
548 (2=p) YERL (58a)

<]

or with —= = Y3 and, considering (56) and (571)

k

i
D
4 3 3
o wy _ o w3 3 Wiy
Y1 an4 = ags - ags (58)

After substituting the solutions
wy = X3 sin m n

in the boundary and transitional conditions, we obtain the
following equations, only dependent on the variable ¢,
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for determining the constants in the functions Xyt

Bt} peo gon
=0 g for t=0 (521)
X, =0 : 531
L } for ¢ = a ‘ (53 1)
X, =0 T (541)
X3 = X34, =0 (6571)
X.' - X. = 0 (561)

ﬁ: i*l >,for £ = Ay FOyFe . otay

t H1i3

~ Xg + X34, + Y3 M4 Xy =0 (581)

-t

3., Plate with one transversal stiffener:

a) Buckling condition.- For the plate with one trans-
versal stiffener (r = 2) eight homogeneous equations, ac—
cording to (51') to (58!'), arise from the solutions of
fields 1 and 2,

wy, =X, sin m M, X, =4, sin At +
E) 2 2 2

+ B, cos At + C
2]

£

1 Sin xag + D1 COS Apt
2 2

. Al
the coefficients of which are given in table 4, This de-
nonminator determinant is solved as for a longitudinal
stiffener; therefore we omit the whole process of solution
for table 4. The result of the solution gives the buck-
ling condition for the uniformly compressed plate with one
transversal stiffener:

(A% =.23%) AjApsin a A, sin an,
+ ¥ (= Ay sin o A, sin oy Ay sin ap At o (89)
+ Ay sin a A, sin a,A; sin &axl) =0

The buckling conditions for infinite stiffness Y,
i.e., for knife-ecdge mounting at the stiffener, result
from (59) by placing the factor ¥ equal to O. The buck-
ling condition is
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- A; sin a Ay sin a3 Az sin ap Ap +
' (80)

+ Ap sin o Ag sin oA, sin oA, =0

Buckling conditions (59) and (60) are, regardless of
the position of the stiffener and the magnitude of the
stiffness ¥, satisfied, if at the same time

sin a A, = 0, sin o Ay = O
or
0,1,2,3 ..n)

it

@ Ay = mg T (m,

0,1,2,3 eea)

1

& Az = mg T (mg

The corresponding ratios o and buckling stresses are ob-
tained from

They are

The case m, or mp equal to gero cancels, ag we
would get o = 0 and k = . With m, = mp = 1,2,3 ...
o becomes

a =1,2,3 .. and k = 4

Thig case also has to be excluded since by hypothesis

k >4, The values k = 4 for the ratios o =1,2,3 ...
are the buckling values of the hinged, nonstiffened plate
where the buckling form consists of square buckles. It is
evident that with one transversal stiffener present, the
buckling values, on account of the greater resistance, gen-
erally must be greater than the ones of ‘the nonstiffened
plate., Only for the special case, where the stiffener co-
incides with a nodal line of the buckling form of the non-—-
stiffened plate, the solution m, = m, with k = 4 1is
valid also for the stiffened plate.

The other values o, ¥ with m,, mp = 1,2,3 ... (m; #
mp) have a simple significance for the nonstiffened plate.



-

- Table 4
a b ¢ d e f g _ L
GlL 4, By G D, 4, B, C, D,
(57) x I o
2| (52) i 1
31 (55") sin a, A, cosay A sin o, 4, cos oy Ay —sine 4, —cos oy 4, —sinecl),,‘ .——cois.m_li., |
4| (57) | —Msinoy 4, | — A2 -cosoy 4 — Msina, 4, — M -cosa A + Msing, 4 + A2cosoy 4 + 23 sin a; A4 -}-i{-gos.a,.ﬂ.,'
sl 560 | mcosmd | — Asing 4 25 C0S oy Ay —dgsinody | —hcosady | +sinogd | —Apcosydy | + Aysinagdy
6| (58 +€I°":fs°.‘ulli!l o f;Si:oglaflzl N ':i u 2 A +_yl’1i sn o a:’z, —Mcosaydy | + Msineyd | —Mcosoydy | + A an a4
; (53') sin o 4y cosea Ay sm LN (_:os.: « )., v
81 (54) —Nsinald | —Acosad | —Asinal,

~—Mcosal,

P06 °Of WOPUBIONSN TeOTWNINE VO YA

Ty
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Plotting the buckligg values %k as functions of the ratio
«, the points a, kK agree with the coordinates of the

intersections of the dbuckling curves k = k(a) for the
nonsgtiffened plate which buckles in longitudinal direction
with m, and m, half-waves, as is obvious from equation

e (g m) - (g )

The result may be summed up in the following sentence:
At the points of intersection of the buckling curves for
the nonstiffened plate for m; and m, half-waves in

longitudinal direction (m,, m, = 1,2,3 .ea3 my, # mpy),
the dbuckling condition of the plate, stiffened by one trans—

versal stiffenor at any place and with any stiffness Y
(also with Y = =) is at the same time satisfied.

For the restriction, ratio al/ae being a real frac-
tion, we can place

a, =r {, a, = 8
in which r, &8 and uw =r + 8 are positive integers.

With the notations

Asl

e AR
the buckling condition (59) becomes
(A2 = 2.%) Ay A sin w ay! sin w !
+ Y 7w (=any sin uw A" sin ¢ A sin s A"+ (61)
+Ag sin uw Ay' sin ra;' sin s A, =0

Each term on the left-hand side contains the common factors
sin A,' and sin A,', so that (61) may be split up into

sin A,' = O, sin A,' = 0 (62)

and



NeAeCeA. Technical Memorandum No, 904 4%

sin u A% sin u Ag'

2 2
A7 = Ae™) Maha THERITT Toinm g
- ] ] i _
R N P A
. by 2

+ Ag

ein u Ap' sin v A,' sin s Xl'] -0
sin Ag' sin A,

-

The quotients in the last equation are relatedvterms.

The buckling conditions (62) which are independent of
Y, are satisfied for A,' = Ag' =w, 27, 3M,e0e m W ...

The corresponding buckling values are, both for Al' and

Na' a
@59.4-%.%) (m = 1,2,3 o0.)

Since ¢ = %} = %}, the fields 1 and 2 buckle like plates
hinged at the four borders with mr and ms half-waves
in longitudinal direction, so that the entire plate buck-
les with m(r + s) half-waves and has a nodal line at the
stiffener. According to buckling condition (63) plate and
stiffener dbuckle at the same time.

.b) Exanmples:

1. Transversal stiffener at a distance a, = a/3

o) Buckling stresses (including the higher ones) for
the sgquare plate.- For the example of the square plate
with one transversal stiffener at one~third of the length
a the buckling stresses from (62) and (63) are plotted

against 'Y in figure 13, In the buckling conditions we
have to place

=1,  s=a2, % =L

The points of interscction of the curves (63) with
the k-axis are at the same time the buckling stresses of

the nonstiffened plate (Y = 0); the corresponding buck-
ling wvalues are: S
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= 4 (buckling form. 1 na1f~wave in- longitudinal
' direction)’

k¥ = 6425 (buckling form: 2 half—waves in Yongitudinal
direction) .

~
i1

18,06 (buckling form: 4 half-waves in longltudlnal
direction)

With increasing Y, the buckling stress k = 4 (Y =
0) sgoes up first and approaches then asymptotically the
value k = 5.795, to which corresponds accordingly a
stiffener with infinite stiffness. With k = 5,795, we
have reached the greatest, in practical cases occurring,
buckling value; the curves aboveée contain higher bdbuckling
stresses. To the values 5.795 < k¥ < 6,56 correspond neg-
ative values Y. These buckling stresses are without phys-
ical significance since there are only positive ratios be-
tween bending stiffnesses of the stiffener and plate. From
(64) we obtain the further solutions:

1,20-.)

i

a
V= ' = P2 | P ith k = (Z +'—l—‘>
A, Ao T, 217 wi z m o
The minimnum value occurs for m =1 and is k = ng =
11,11 .... At this value the plate duckles with 3 half-
waves in §f-direction with a node at the stiffener.

B) Buckling stresses devending on the ratio a.- In
figure 14 the buckling values are plotted as functions of
o for the case of one transversal stiffener at a/3. The
buckling conditions (62) and (63) are for this case

sin % A, = sin = Ny =0 (64)

(ANZ=23)N 2p (4- cos? & >\1-1> (4 cos? Z >\2-1>

+ Y n4l_— A (4 cos? % A1~1> sin %% Ag + \ (65)

+ Ap (4 cos? % A8~l> sin %% Al] = 0

The buckling values

3m o 2
= — 4+ == = 1,2 P
k o 3m> (m i )




NeAeCosA, Technical Memorandum No, 9204 45

. from (64), which are independent of ¥, are those of the
nonstiffened plate with 3,.6, 9 ... . half-waves in longi-
tudinal direction, so that a nodal line occurs at the
stiffener.

The solutions of the equation (65) give curves that
are calculated for Y = 0.5, 1,0, and , and plotted in
figure 14. These curves coming from infinity with o =0
have a wave-~shaped course and approach - not mentioning
those for higher buckling stresses - with increasing ratio
o asymptotically the minimum value of the buckling stresse—
es k = 4,

For the ratios o =3, 6,”9 ... and those in the imme-
diate neighborhood, the, buckling condition (64) gives the
smallest buckling stresses.

The initial and end points of the sections, within
which according to (64) lie the smaller buckling values,
are'given by the intersections of the curves for (64) with
those for (65), the magnitude of these sections being de-
rendent on the magnitude of the stiffness Y. The sections
are smallest for Y = 0; +the corresponding ratios o then
lie within the limitse

J(Bn - 1) Bu <a < ./3n (3m + 1)

(For m = 1, o is 2.450 < o < 3,464.) The sections become
larger with increasing Y and reach their maxima for Y =
w. (For m =1, we get 2,12 < o < 3,68.)

Buckling condition (65) ig satisfied independently of
Y, if at the same time

o 5 '
4 cos® ¥ Ay -1 =0 and 4 cos® F Ay =1 =0
or ' '
% = x X & .=:i:-]-‘-
cos 3.}1 = £ 3 and cos o Az 5

S0 that

@A, =&, . T 2m 4w 5w  m 8w -
% 1-.-5 2..'3'| *—3—9-—3' 39 3'- 5 2 e

Theée,values are reached at'the'intersecﬁions of the buck-
ling curves for m; and mp half-wayes of the nonstiff-

. 2

ened plate (’&', =,/m; . my, k = ﬁ?};:*'l__ﬂ_lgl_ with m,, mz; =
2

1. 2, 4, 5' 7, 8 se e (m]_# ma).
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As figure 14 shows, the curves (65), depending on ¥,
touch each other at the intersectiong of the dbuckling
curves for 1 and 2, 2 and 4, 4 and 5, etc. half-waves of
the nonstiffened plate, so that in these points the buck-
ling values Lk are equal to those of the nonstiffened
plate for any value of the stiffness Y.

From table 5 the exact buckling values k for the ra—
tios a,/a = 1/3 and a,/a = 1/4 may be taken,

L ____ Table 5
a,/a N &
0.4 0.6 1.0 1.4 1.8

5 11.265 8,703 5.694 4,519 4,317
1/3 | 10 13,768 10.085 5,748 4,519 4,326
B 15 15.840 10.741 5.764 4,519 4,329
5 10.287 7,474 5,317 4,515 4,458
1/4 | 10 11.907 8.655 5.402 4,516 4,472
15 13.210 9.226 5.429 4,516 44477

2, Transversal stiffencr in the middle of the plate.-
For a transversal stiffener in the middle of the plate
(a, = a5 = a/2) the buckling conditions (62) and (63)
change invo

. O . .
sin 5 Ay = sin 5 Ay =0 (66)
and
2(N,Z=N3%)A g cos & A, cos % Ag + Y me
- (67)
Ln A, sin % Ay coOs % Ay, + Ay sin % Ay cOS % Ag | = OJ
The buckling values from (66)
2
1{=<—2—q'—+—2—-n—1) (m=l, 2, 3 000)
m a

are those of the nonstiffened plate with one nodal line in
the middle., The corresponding buckling form therefore is
antisymmetrical to the center line ¢ = of2. Buckling con-
dition (67) which is also contained in Lokshin's solutions
(reference 13) gives the buckling values for the bduckling
form which is symmetrical to the center line ¢§ = a/2. The
required minimum stiffnesses were calculated by Timoshenko
(reference 2) with the energy method,
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4. Plate with two trangversal stiffeners - .
a) General buckling condition.=- ¥Yor the plate
with two transversal stiffeners the 12 equations in table
-6-are developed.from the deflections w of the plate
field 1 to 3 with the aid of the boundary and transi-
tional conditions (51!') to (58%). The solution of the
denominator determinant gives the following general
buckling condition of the hinged rectangular plate with
two transversal stiffeners: ' '
1273 (A% — 72)®sino 4, sina 4,
+ w2y Ay (23 — 73) {yy [Aysin a2y sin oy 4y sin (2p + %5) 4,
— Zgsin o Ay sin oy ) sin (ot + og) 4]
+ vo[Ay sin o2y sin (x; + op) Ay sin oy 4y
— Xpsina Apsin (o -+ ag) A - sinag 4]}
+ a8y pe{idsinaly sinay Ay -sinoag Zysinog 2,

\ (68)
—+ 73 sin ok, sin oy % sin oy 4y sin ag 4y
-+ Ay Ap [sin oty Ay sinag 4y (sin oy Ay sinag 4, —
— sin (o + o) A sin (oty + 23) 4))
-+ sin oy Ay sinag 4, (sin oty 4; sin og 25 —
— sin (& 4 ap) 4 sin (ory + o5) 45)]} = 0.
b) Two trangversal stiffenerg., symmetrical to_ the

center line ¢ = 572, with equal dimensions.- The bduck-

ling condition (68), with stiffeners placed symmetric-
ally

Y, = Yo=Y and &, =8,, a, =a,
simplifies to
[(7.?—Zg)lllzsingllsin-g-lz-{-yn‘(——llsin—gllsinmllzsin%lz
+ Apsin % A, sin @ &y sin 2 ;.,)] - [(zg — 1) Iy lycos = Ay cos = 2, (69)

. . . o : \
+ ynt (— }.lcos% Ay sinoy Azcos7’12 + lzcos;lzsm oy llcos%’«}.l =o0.

From this we obtain two different buckling conditions
by placing each of the two factors equal to szero.
1. The first duckling condition
(Zi—lg)},llz'sin—f:— llsin%lz o)
+yn‘(—llsiniz—llsinal'lzsin%).,—{-lzsinglzsinalllsin%’- ):0 l
agrees with the one ror the plate with one trangversal
stiffener at the point ¢ = o, (see equation (52))
where the border of the plate ¢t = a in (59) corresponds
to the center of the plate ¢ = af2 in (70). Since
buckling condition (59) ie based on hinged plate borders,
the buekling form from (70) contains one nodal line in
the center of the plate, so that the antisymmetrlcal
buckling forms correspond to bduckling condition (70).
2, The second factor in (69) gives the buckling
condition

(1 — 13) Iy Azcos o hycos— Ay ‘

> . a5 (71)
+y:-z‘(—llcos%llsinal).zcos%’l,-'{—lzcos%lzsmalllcosi;'—ll)=0 I

with the buckling stresses for buckling forms symmetri-
cal to the center line ¢ = af2,
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f

a. b ¢ d e o
Gl A4, B, c, D, A, By
1} (51) I I o
2| (s2) | i 2
3] (55) sin oy 4, cos o, 4 sin a, Ay €OoS ay Ay —sina; 4, —cosa, 4,
: (57') | — A%sina, 4,{ — Aicosoy 4 | —A§sinay 4y | — AJcosay 4y + Atsiney 4, + A1 cos oy},
5‘ (56°) | Mcosoydy |—Aysineydy{ A,cosady |—Aysine Ay —Acosuyly + 4 singy 4, B
. e . e
6] (58) f;ﬁss?ﬁ oilll -i—oyfvlz‘s :;: ;12): —i—lﬁl‘;zc:ssﬁ :12}., +yﬁ§g;g ::;, — Ajcosoy 4y + Asine &
71 (55) sin (o) + o) 4y cos (&, + ag) 4
8 ‘ (57") — A¥sin (g + o) 4| — A} cos (& + o) 4,
(56" 2y €08 (ot + g) Ay — Aysin (o + o) 4
ol (58) e o Toibacos o o
I Gy;—_ - '
12| (54) '

Condition (70) for antisymmetrical buckling 1s
satisfied for any value Y, if
sin2 A, =sin—4,=0
or 2 1 2 2
%11=—:—12=n,27z,3n...

To these values are coordinated the polnts with the

ratios @ iy’miﬁ; and the buckling values

- + ,

k = -(-5;1—{33-)——— for m, ,m, = 2,4,6 ...(ml#m 2 the values
]

with m, = m, drop out for the same reason -as in the

corresponding case of one transversal stiffener. Buck-
ling condition (71) for symmetrical buckling, independ-
ent of position and magnitude of the stiffener, is sat-
igfied for

cos % Ay =cos —;i'lz =0

or
2! 2
%, £ with nm,,m, =

o [+ b3

',;11=—2“12=—,

2

To this correspond the points
1, 3, 5 .. (mgm,).

¢) Exampleg.- For two equally large stiffeners at
equal distances (a, =a, = a/3) the buckling condi-

tions (70) and (71) become, after further splitting up:
sin%ll = sin%— =0, (72)
(32 — 72) 117.2<4cosz - I)<4c052% 2 — 1)

+ yn‘[— 7~1<4c052%11— I)sin%22+ 12(4(‘.052% Ay — I)sin ; 7.1J=0 73)
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y o i o k v ! m
Gy D, "y LBy ¢ D,
— it oty Ay —COS &) Ay B
+ A sinoy 4y 4+ A cos oy A
— Ay o8 &y Ay + Ay sinay 4, -
— A cos ay Ay + Alsina, 4,
sin (o 4 a',) Aq cos (oo - ag) Ay [—sin (o, 4 o) 4, — cos {0y + otg) Ay [—sin (o; + otg) Ag— cOs (o) + g) Ay
— 3 sin (o 4 otg) Ay — 25 cos (o + ag) Ayl + Af sin-(oy - ag) A+ A cOs (o) + otg) Ay + A sin (o) +etg) g+ A cOs (01 2g) Ay
Ay cos (o) + og) Ag |— Ay sin (o 4 otg) Ag [— 4, cOS (ot +otg) Ay |+ A, sin (&, +-atg) 4y |——AgCOS(0ty +o0tg) Ag + Ag sin(ot; +otq) )..,i
1
Hcos (o + xy) A |—Asin (2 + ag)dy .
Fptsin (o + otg) Ag] -+ 47880+ g) Ay Acos (o) +ag) Ay |+ Alsin (o, +og) A, |[—AbCOS (o) +otg) Ag| + A) sin (oy +-01g) Ag
sin o Ay cos a A, ' sin a A, cos a Ay
A} sin e 4, A} cos a Ay A3sin o Ay . A2 cos o A,
for antlisymmetrical dbuckling, and )
o )
€08 - Ay = cos - Ay = 0, 4 (74)

(A —23) 4 4, (4005“‘-2)i M — 3>(4cos“—°61 Ay — 3)
. 5
+ yn‘[— YR <4c()s2.:.11 — 3) sm-;. Ay + 2,(4 cos?»g Ay — 3) sin—} 11] =0 l (75)
for symmetrical buckling.

The corresponding buckling stresses are glven in
figure 15 for different valnes,

The equations for antisymmetrical duckling agree
with those for a plate with one transversal stiffener
at 1/2 of its length. (See (64) and (65), also fig. 1l4.)
The ratios a 1in those equations must be replaced by
«/2, The discussion of antisymmetrical duckling is
omitted since the buckling conditions (64) and (65)
have been discussed before.

From (74) we obtain the buckling values:
b= (32 4st) m=n23.0.

| The plave vuckles Like the nonstiffened plate with
3, 6 9 «.. half-waves in longitudinal direction, 80
that nodal lines arise at the stiffeners. The buckling
gtresses from (75) give the curves for the symmetrical
buckling forms, for which the stiffeners also bend at.
buckling. These curves, like the corrpsponding curves
of the antisymmetrical buckling, also approach asymptot-
ically the minimum value k = 4 for increasing rat o .
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Since buekling condition (75) is satisfied for any
value Y, 1if

4 cos® % Ay -~ 3 = 4 cos® % Ag = 3 =0

or
_d: - .a‘._ — __.” __5._ ...._' il
5 )\1 = 6 >\g = 6, 9 B es e

it follows for the corresponding values

that m,,mp =1, 5, 7 «ss Therefore the curves, depending

on Y, touch each other at the intersections of the curves
for 1 and 5, 5 and 7 .. half-waves of the nonstiffened
plate. At the intersections of the curves for 1 and 3,

%2 and 5 ... half~waves of the nonstiffened plate, the dbuck-
ling condition (74), which is independent of Y, confirms
the already mentioned fact, that also in these points the
plate buckles independently of the stiffeners.

In the sections in which the buckling conditions give
the smallest buckline values, the curves are full lines,
It is evident from the continuous change of symmetrical
and antisymmetrical buckling forms that both types are of
equal significance,

Translation by We L. Koch,
California Institute
of Technology
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